37 research outputs found

    Provisioning lightpath demands with quality of protection grades in WDM optical networks

    Get PDF
    Master'sMASTER OF ENGINEERIN

    A novel non-homologous recombination-mediated mechanism for Escherichia coli unilateral flagellar phase variation

    Get PDF
    Flagella contribute to the virulence of bacteria through chemotaxis, adhesion to and invasion of host surfaces. Flagellar phase variation is believed to facilitate bacterial evasion of the host immune response. In this study, the flnA gene that encodes Escherichia coli H17 flagellin was examined by whole genome sequencing and genetic deletion analysis. Unilateral flagellar phase variation has been reported in E. coli H3, H47 and H17 strains, although the mechanism for phase variation in the H17 strain has not been previously understood. Analysis of phase variants indicated that the flagellar phase variation in the H17 strain was caused by the deletion of an ∼35 kb DNA region containing the flnA gene from diverse excision sites. The presence of covalently closed extrachromosomal circular forms of this excised 35 kb region was confirmed by the two-step polymerase chain reaction. The deletion and complementation test revealed that the Int1157 integrase, a tyrosine recombinase, mediates the excision of this region. Unlike most tyrosine recombinases, Int1157 is suggested to recognize diverse sites and mediate recombination between non-homologous DNA sequences. This is the first report of non-homologous recombination mediating flagellar phase variation

    Comparative genomic analyses of Mycoplasma hyopneumoniae pathogenic 168 strain and its high-passaged attenuated strain

    Get PDF
    Background: Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia (EP), a mild, chronic pneumonia of swine. Despite presenting with low direct mortality, EP is responsible for major economic losses in the pig industry. To identify the virulence-associated determinants of M. hyopneumoniae, we determined the whole genome sequence of M. hyopneumoniae strain 168 and its attenuated high-passage strain 168-L and carried out comparative genomic analyses. Results: We performed the first comprehensive analysis of M. hyopneumoniae strain 168 and its attenuated strain and made a preliminary survey of coding sequences (CDSs) that may be related to virulence. The 168-L genome has a highly similar gene content and order to that of 168, but is 4,483 bp smaller because there are 60 insertions and 43 deletions in 168-L. Besides these indels, 227 single nucleotide variations (SNVs) were identified. We further investigated the variants that affected CDSs, and compared them to reported virulence determinants. Notably, almost all of the reported virulence determinants are included in these variants affected CDSs. In addition to variations previously described in mycoplasma adhesins (P97, P102, P146, P159, P216, and LppT), cell envelope proteins (P95), cell surface antigens (P36), secreted proteins and chaperone protein (DnaK), mutations in genes related to metabolism and growth may also contribute to the attenuated virulence in 168-L. Furthermore, many mutations were located in the previously described repeat motif, which may be of primary importance for virulence. Conclusions: We studied the virulence attenuation mechanism of M. hyopneumoniae by comparative genomic analysis of virulent strain 168 and its attenuated high-passage strain 168-L. Our findings provide a preliminary survey of CDSs that may be related to virulence. While these include reported virulence-related genes, other novel virulence determinants were also detected. This new information will form the foundation of future investigations into the pathogenesis of M. hyopneumoniae and facilitate the design of new vaccines

    Derivation of Escherichia coli O157:H7 from Its O55:H7 Precursor

    Get PDF
    There are 29 E. coli genome sequences available, mostly related to studies of species diversity or mode of pathogenicity, including two genomes of the well-known O157:H7 clone. However, there have been no genome studies of closely related clones aimed at exposing the details of evolutionary change. Here we sequenced the genome of an O55:H7 strain, closely related to the major pathogenic O157:H7 clone, with published genome sequences, and undertook comparative genomic and proteomic analysis. We were able to allocate most differences between the genomes to individual mutations, recombination events, or lateral gene transfer events, in specific lineages. Major differences include a type II secretion system present only in the O55:H7 chromosome, fewer type III secretion system effectors in O55:H7, and 19 phage genomes or phagelike elements in O55:H7 compared to 23 in O157:H7, with only three common to both. Many other changes were found in both O55:H7 and O157:H7 lineages, but in general there has been more change in the O157:H7 lineages. For example, we found 50% more synonymous mutational substitutions in O157:H7 compared to O55:H7. The two strains also diverged at the proteomic level. Mutational synonymous SNPs were used to estimate a divergence time of 400 years using a new clock rate, in contrast to 14,000 to 70,000 years using the traditional clock rates. The same approaches were applied to three closely related extraintestinal pathogenic E. coli genomes, and similar levels of mutation and recombination were found. This study revealed for the first time the full range of events involved in the evolution of the O157:H7 clone from its O55:H7 ancestor, and suggested that O157:H7 arose quite recently. Our findings also suggest that E. coli has a much lower frequency of recombination relative to mutation than was observed in a comparable study of a Vibrio cholerae lineage

    A Recalibrated Molecular Clock and Independent Origins for the Cholera Pandemic Clones

    Get PDF
    Cholera, caused by Vibrio cholerae, erupted globally from South Asia in 7 pandemics, but there were also local outbreaks between the 6th (1899–1923) and 7th (1961–present) pandemics. All the above are serotype O1, whereas environmental or invertebrate isolates are antigenically diverse. The pre 7th pandemic isolates mentioned above, and other minor pathogenic clones, are related to the 7th pandemic clone, while the 6th pandemic clone is in the same lineage but more distantly related, and non-pathogenic isolates show no clonal structure. To understand the origins and relationships of the pandemic clones, we sequenced the genomes of a 1937 prepandemic strain and a 6th pandemic isolate, and compared them with the published 7th pandemic genome. We distinguished mutational and recombinational events, and allocated these and other events, to specific branches in the evolutionary tree. There were more mutational than recombinational events, but more genes, and 44 times more base pairs, changed by recombination. We used the mutational single-nucleotide polymorphisms and known isolation dates of the prepandemic and 7th pandemic isolates to estimate the mutation rate, and found it to be 100 fold higher than usually assumed. We then used this to estimate the divergence date of the 6th and 7th pandemic clones to be about 1880. While there is a large margin of error, this is far more realistic than the 10,000–50,000 years ago estimated using the usual assumptions. We conclude that the 2 pandemic clones gained pandemic potential independently, and overall there were 29 insertions or deletions of one or more genes. There were also substantial changes in the major integron, attributed to gain of individual cassettes including copying from within, or loss of blocks of cassettes. The approaches used open up new avenues for analysing the origin and history of other important pathogens

    Whole genome sequence-based characterization of virulence and antimicrobial resistance gene profiles of Staphylococcus aureus isolated from food poisoning incidents in eastern China

    Get PDF
    Staphylococcus aureus is an opportunistic foodborne pathogen occasionally isolated from diarrhea patients. In recent years, increasing studies have reported the detection of S. aureus in food poisoning incidents due to food contamination in the North and South of China. However, the epidemiology and genetic characteristics of S. aureus from food poisoning incidents in Eastern China remain unknown. The present study examined the genetic characteristics, antimicrobial resistance, and virulent factors of multidrug-resistant S. aureus isolated from 22 food poisoning incidents reported by the hospitals and health centers in Eastern China from 2011 to 2021. A total of 117 resistant and enterotoxigenic S. aureus isolates were collected and sequenced, among which 20 isolates were identified as methicillin resistant. Genetic analysis revealed 19 distinct CC/ST types, with CC6, CC22, CC59, CC88, and CC398 being the most frequent variants in methicillin-resistant S. aureus (MRSA). A considerable shift in CC types from CC1 to CC398 between 2011 and 2021 was observed in this study, indicating that CC398 may be the main epidemic strain circulating in the current food poisoning incidents. Additionally, genes for enterotoxins were detected in 55 isolates, with a prevalence of 27.8% (27/97) for methicillin-sensitive variants and 35.0% (7/20) for MRSA. The scn gene was detected in 59.0% of the isolates, demonstrating diverse contaminations of S. aureus among livestock-to-human transmission. Of the 117 isolates, only ten isolates displayed multi-drug resistance (MDR) to penicillin, tetracycline, and macrolides. None of the 117 foodborne S. aureus isolates tested positive for vanA in this study. Together, the present study provided phylogenetic characteristics of S. aureus from food poisoning incidents that emerged in Eastern China from 2011 to 2021. Our results suggested that these diarrhea episodes were hypotonic and merely transient low-MDR infections, however, further research for continued surveillance given the detection of virulence and antimicrobial resistance determinants is required to elucidate the genomic characteristics of pathogenic S. aureus in food poisoning incidents in the context of public health

    Genomic characterization of Salmonella isolated from retail chicken and humans with diarrhea in Qingdao, China

    Get PDF
    Salmonella, especially antimicrobial resistant strains, remains one of the leading causes of foodborne bacterial disease. Retail chicken is a major source of human salmonellosis. Here, we investigated the prevalence, antimicrobial resistance (AMR), and genomic characteristics of Salmonella in 88 out of 360 (24.4%) chilled chicken carcasses, together with 86 Salmonella from humans with diarrhea in Qingdao, China in 2020. The most common serotypes were Enteritidis and Typhimurium (including the serotype I 4,[5],12:i:-) among Salmonella from both chicken and humans. The sequence types were consistent with serotypes, with ST11, ST34 and ST19 the most dominantly identified. Resistance to nalidixic acid, ampicillin, tetracycline and chloramphenicol were the top four detected in Salmonella from both chicken and human sources. High multi-drug resistance (MDR) and resistance to third-generation cephalosporins resistance were found in Salmonella from chicken (53.4%) and humans (75.6%). In total, 149 of 174 (85.6%) Salmonella isolates could be categorized into 60 known SNP clusters, with 8 SNP clusters detected in both sources. Furthermore, high prevalence of plasmid replicons and prophages were observed among the studied isolates. A total of 79 antimicrobial resistant genes (ARGs) were found, with aac(6′)-Iaa, blaTEM-1B, tet(A), aph(6)-Id, aph(3″)-Ib, sul2, floR and qnrS1 being the dominant ARGs. Moreover, nine CTX-M-type ESBL genes and the genes blaNMD-1, mcr-1.1, and mcr-9.1 were detected. The high incidence of MDR Salmonella, especially possessing lots of mobile genetic elements (MGEs) in this study posed a severe risk to food safety and public health, highlighting the importance of improving food hygiene measures to reduce the contamination and transmission of this bacterium. Overall, it is essential to continue monitoring the Salmonella serotypes, implement the necessary prevention and strategic control plans, and conduct an epidemiological surveillance system based on whole-genome sequencing

    Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The phylum <it>Verrucomicrobia </it>is a widespread but poorly characterized bacterial clade. Although cultivation-independent approaches detect representatives of this phylum in a wide range of environments, including soils, seawater, hot springs and human gastrointestinal tract, only few have been isolated in pure culture. We have recently reported cultivation and initial characterization of an extremely acidophilic methanotrophic member of the <it>Verrucomicrobia</it>, strain V4, isolated from the Hell's Gate geothermal area in New Zealand. Similar organisms were independently isolated from geothermal systems in Italy and Russia.</p> <p>Results</p> <p>We report the complete genome sequence of strain V4, the first one from a representative of the <it>Verrucomicrobia</it>. Isolate V4, initially named "<it>Methylokorus infernorum</it>" (and recently renamed <it>Methylacidiphilum infernorum</it>) is an autotrophic bacterium with a streamlined genome of ~2.3 Mbp that encodes simple signal transduction pathways and has a limited potential for regulation of gene expression. Central metabolism of <it>M. infernorum </it>was reconstructed almost completely and revealed highly interconnected pathways of autotrophic central metabolism and modifications of C<sub>1</sub>-utilization pathways compared to other known methylotrophs. The <it>M. infernorum </it>genome does not encode tubulin, which was previously discovered in bacteria of the genus <it>Prosthecobacter</it>, or close homologs of any other signature eukaryotic proteins. Phylogenetic analysis of ribosomal proteins and RNA polymerase subunits unequivocally supports grouping <it>Planctomycetes</it>, <it>Verrucomicrobia </it>and <it>Chlamydiae </it>into a single clade, the PVC superphylum, despite dramatically different gene content in members of these three groups. Comparative-genomic analysis suggests that evolution of the <it>M. infernorum </it>lineage involved extensive horizontal gene exchange with a variety of bacteria. The genome of <it>M. infernorum </it>shows apparent adaptations for existence under extremely acidic conditions including a major upward shift in the isoelectric points of proteins.</p> <p>Conclusion</p> <p>The results of genome analysis of <it>M. infernorum </it>support the monophyly of the PVC superphylum. <it>M. infernorum </it>possesses a streamlined genome but seems to have acquired numerous genes including those for enzymes of methylotrophic pathways <it>via </it>horizontal gene transfer, in particular, from <it>Proteobacteria</it>.</p> <p>Reviewers</p> <p>This article was reviewed by John A. Fuerst, Ludmila Chistoserdova, and Radhey S. Gupta.</p

    Rates of Mutation and Host Transmission for an Escherichia coli Clone over 3 Years

    Get PDF
    Although over 50 complete Escherichia coli/Shigella genome sequences are available, it is only for closely related strains, for example the O55:H7 and O157:H7 clones of E. coli, that we can assign differences to individual evolutionary events along specific lineages. Here we sequence the genomes of 14 isolates of a uropathogenic E. coli clone that persisted for 3 years within a household, including a dog, causing a urinary tract infection (UTI) in the dog after 2 years. The 20 mutations observed fit a single tree that allows us to estimate the mutation rate to be about 1.1 per genome per year, with minimal evidence for adaptive change, including in relation to the UTI episode. The host data also imply at least 6 host transfer events over the 3 years, with 2 lineages present over much of that period. To our knowledge, these are the first direct measurements for a clone in a well-defined host community that includes rates of mutation and host transmission. There is a concentration of non-synonymous mutations associated with 2 transfers to the dog, suggesting some selection pressure from the change of host. However, there are no changes to which we can attribute the UTI event in the dog, which suggests that this occurrence after 2 years of the clone being in the household may have been due to chance, or some unknown change in the host or environment. The ability of a UTI strain to persist for 2 years and also to transfer readily within a household has implications for epidemiology, diagnosis, and clinical intervention
    corecore